Threeconnected graphs with only one Hamiltonian circuit¹

Emanuels Grinbergs

University of Latvia

We will call graph 1-H-graph if it is threeconnected and it has only one Hamiltonian circuit (H-circuit). We will say that in the graph G three distinct vertices x, y, z in the given order comprise $special\ triplet$ – shorter, s- $triplet\ \{x, y, z\}$ if

- 1) there is only one Hamiltonian chain (*H-chain*) [x...y] with end vertices x, y;
- 2) there isn't *H*-chain [x...z];
- 3) and either
 - 3.1) G is threeconnected; or
 - 3.2) *G* is not threeconnected, but it becomes threeconnected if vertex *t* and edges *tx*, *ty*, *tz* are added.

H-chains [y...z] can be of arbitrary number, or be not at all.

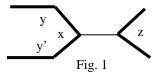
Graph *G* satisfying these conditions will be called *preparation*.

If graphs G and G' without common elements have correspondingly s-triplets $\{x, y, z\}$ and $\{x',y',z'\}$, then the linking these graphs by edges xy', yx', zz' will give new graph G'' that is 1-H-graph. Rightly, because of condition 3 G'' is threeconnected. The only H-circuit of G'' is composed from elements [x...y], yx', [x'...y'], y'x.

Indeed, each H-circuit of G'' has just two edges from xy', yx', zz'. Because of the condition 1 first two edges go only into indicated H-circuit. Because of the fact that there aren't H-chains [x...z] in G and [x'...z'] in G', pairs of edges xy', zz' and yx', zz' do not go in any H-circuit of G''.

¹ This article is compiled from several fragments from Grinbergs manuscripts by D. Zeps

If G is a graph with only one H-circuit we will say that the edges of the H-circuit are strong, but other edges are weak. For each vertex x of G with degree $p \ge 3$ there are at least 2(p-2) triplets x, y, z that satisfy condition 1 and 2 (Fig. 1, where strong edges are bold).



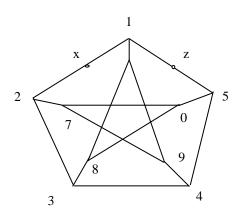
Vertices y and z are taken correspondingly the end vertices of strong and weak edges xy and xz.

If preparation G have vertices of degree 2 then because of the condition 3.2 they all must go into s-triplet. But, if G is 1-H-graph the condition 3 is satisfied, and each triplet of the type of fig. 1 is s-triplet; but there can be other s-triplets too. Two such graphs can be linked together in different ways and thus giving new 1-H-graphs.

Thus, it is possible to build 1-H-graphs with arbitrary large number of vertices.

Simplest graphs that we succeeded to find was some modifications of Petersen's graphs: G_0 with n=9, G_1 with n=11 and G_2 , G_3 with n=12.* [Note of the composer of the article: The matrixes below in (i, j), showing the number of H-chains between vertices i and j, are computer data and added by us, but in Grinberg's manuscripts indeed were absent. These data allow easy to see that Grinberg characterized all s-triples in considered by him preparations.]

1	2	3	4	5	6	7	8	9	0	x	y
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	2	0	0	0	1	0	2
0	0	0	0	1	3	3	0	1	2	1	5
0	1	0	0	0	0	3	2	1	2	5	1
0	0	1	0	0	2	1	0	0	0	2	0
0	2	3	3	2	0	3	0	0	3	2	2
0	0	2	2	1	3	0	1	0	0	1	5
0	0	0	1	0	0	1	0	0	0	4	4
0	0	1	0	0	0	0	0	0	1	4	4
0	1	2	2	0	3	0	0	1	0	5	1
0	0	1	5	2	2	1	4	4	5	0	0
0	2	5	1	0	2	5	4	4	1	0	0

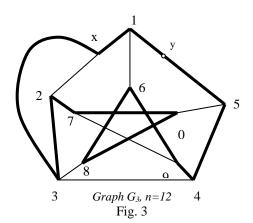


Graph G_2 , n=12

Fig. 2

Here (in fig. 2) is s-triple $\{x, 3, z\}$ (that by automorphisms of G_2 transforms into equivalent s-triples $\{x, 7, z\}$, $\{z, 4, x\}$, $\{z, 0, x\}$). Indeed, there are not H-chains [x...z], otherwise there were H-circuit in the Petersen's graph. If we add edge x3, we get graph isomorphic to G_3 (in Fig. 3). In Fig.3 the only H-circuit of the graph G_3 is drawn bold, which has in correspondence the only H-chain of G_2 , namely, [x...3].

1	2	3	4	5	6	7	8	9	0	X	y
0	0	1	2	0	0	1	1	1	2	1	1
0	0	1	5	2	6	1	3	1	2	0	7
1	1	0	0	1	3	2	0	2	3	1	6
2	5	0	0	1	5	4	3	1	5	5	4
0	2	1	1	0	2	1	1	1	0	2	1
0	6	3	5	2	0	3	1	1	4	2	3
1	1	2	4	1	3	0	2	0	1	1	6
1	3	0	3	1	1	2	0	2	1	4	8
1	1	2	1	1	1	0	2	0	3	5	6
2	2	3	5	0	4	1	1	3	0	6	3
1	0	1	5	2	2	1	4	5	6	0	1
1	7	6	4	1	3	6	8	6	3	1	0

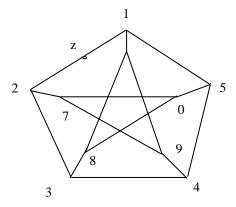


In the graph G_3 , because of the condition 3.2, vertex y goes into each s-triple. From y goes out H-chains with ends in each other vertex of G_3 , but only in vertices I, S or X exactly once. Thus, one of these vertices can be first vertex of S-triple, but Y must be the second in any case.

Good are both trivial s-triples $\{1, y, 6\}$ and $\{5, y, 0\}$. It can be established that there are two more s-triples, $\{1, y, 2\}$ and $\{x, y, 2\}$ - giving together four s-triples. Triples $\{1, y, 5\}$ and $\{5, y, 1\}$ are not s-triples because of condition 3.2. Because G_3 has only identical automorphism, these s-triples are essentially different.

One more simple preparation $(G_1, \text{ fig. 4})$ with s-triple $\{1, 4, z\}$. Equivalent with vertex 4 are 8, 9 and 0, because automorphisms by (1)(2)(z) are two: (37)(40)(5)(6)(89) and (3)(7)(56)(48)(90).

1	2	3	4	5	6	7	8	9	0	Z
0	0	2	1	0	0	2	1	1	1	0
0	0	0	1	2	2	0	1	1	1	0
2	0	0	0	4	4	4	0	3	3	2
1	1	0	0	0	3	3	2	0	2	6
0	2	4	0	0	4	4	3	3	0	2
0	2	4	3	4	4	0	4	0	3	2
2	0	4	3	4	4	0	3	0	0	2
1	1	0	2	3	0	3	0	2	0	6
1	1	3	0	3	0	0	2	0	2	6
1	1	3	2	0	3	0	0	2	0	6
0	0	2	6	2	2	2	6	6	6	0

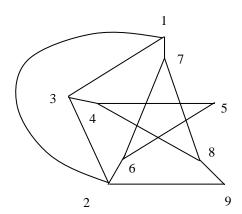


Graph G_1 , n=11

Fig. 4

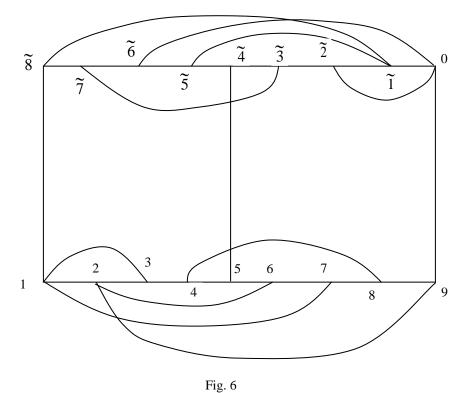
Preparation with n=9 is G_0 (fig. 5) with s-triple {1, 9, 5}. Thus we get 1-H-graph with 18 vertices (fig. 6).

1	2	3	4	5	6	7	8	9
0	1	3	1	0	1	2	1	1
1	0	1	0	1	1	0	0	3
3	1	0	2	2	0	1	1	3
1	0	2	0	3	0	0	1	1
0	1	2	3	0	3	1	1	3
1	1	0	0	3	0	2	0	2
2	0	1	0	1	2	0	2	1
1	0	1	1	1	0	2	0	3
1	3	3	1	3	2	1	3	0



Graph G₀, n=9

Fig. 5



Thus we get threeconnected 1-H-graph with n=18 vertices. Vertices 1, 2, 0, $\widetilde{1}$ are with degree four, other of degree three. It seams that at least four edge crossings. The only non-trivial automorphism is symmetry (1 0)(2 $\widetilde{1}$)(3 $\widetilde{2}$)(4 $\widetilde{3}$)(5 $\widetilde{4}$)(6 $\widetilde{5}$)(7 $\widetilde{6}$)(8 $\widetilde{7}$)(9 $\widetilde{8}$).

The graph constructed from preparations with 9 vertices is possibly minimal threeconnected graph with only one Hamiltonian circuit. Our construction gives only nonplanar graphs. Existence of planar such graphs remains as unsolved problem.